Determination of the parameters for a day-degree method to predict the flight of host populations of *Hyalesthes obsoletus*

Michael Maixner
JKI – Julius Kühn-Institute
Federal Research Centre for Cultivated Plants
Institute for Plant Protection in Fruit Crops and Viticulture
Bernkastel-Kues, Germany
Life history of *Hyalesthes obsoletus*

- Soil inhabiting Cixiid – only adult planthoppers occur above ground
- Specific host-populations are associated with bindweed and nettle
Temperature is a major abiotic determinant for the life history of arthropods

- Calculation of accumulated heat units allows prediction of life history parameters

 - Required parameters:
 - Starting date (Biofix)
 - Temperature threshold (Basis)
 - Temperature sums required for the occurrence of a particular event

 - Parameters are often unknown
 - Use of “standard” values
 - “Trial and Error”
 - Use of empirical field data to estimate appropriate combinations of parameters (inverse modelling)
Flight activity data of *H. obsoletus* including data of M. Breuer, U. Ipach and M. Stark-Urnau

Start of flight activity of host populations of *Hyalesthes obsoletus*
Temperature dependence of the flight of adult *H. obsoletus*

Start of flight activity related to accumulated T-units from March 1 to the start of flight

- C.a.-populations
- U.d.-populations
Calculation and optimization of the necessary parameters for a degree-day method

Field data on flight activity

Starting date:
- \(d_{\text{min}} \ldots d_{\text{max}}; \Delta d=1\)

Threshold-Temp.:
- \(T_{\text{min}} \ldots T_{\text{max}}; \Delta T \text{ variabel}\)

Weather-data

Temp-Sums

Comparison

Observed <> Calculated

- Days: - Range,
 - Mean, SE

- T-Sum: - Range
 - Mean, SE
 - abs. + rel.

- Mean

- STD, SE, RCV
Calculation and optimization of the parameters for a degree-day method

Definition of parameter variation

<table>
<thead>
<tr>
<th></th>
<th>Parameter</th>
<th>Start-Datum</th>
<th>End-Datum</th>
<th>Start-Param</th>
<th>End-Param</th>
<th>Inkrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>WD_1</td>
<td>1. Jan.</td>
<td>30. Apr.</td>
<td>0</td>
<td>12</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>WD_2</td>
<td>1. Feb.</td>
<td>15. Mai.</td>
<td>0</td>
<td>8</td>
<td>0,50</td>
</tr>
<tr>
<td>4</td>
<td>WD_3</td>
<td>1. Jan.</td>
<td>30. Apr.</td>
<td>5</td>
<td>15</td>
<td>0,25</td>
</tr>
<tr>
<td>5</td>
<td>WD_4</td>
<td>1. Mrz.</td>
<td>31. Mai.</td>
<td>0</td>
<td>10</td>
<td>0,10</td>
</tr>
<tr>
<td>6</td>
<td>WD_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field observation and weather data

List of results

Calculation and optimization of the parameters for a degree-day method

Definition of parameter variation

<table>
<thead>
<tr>
<th></th>
<th>Parameter</th>
<th>Start-Datum</th>
<th>End-Datum</th>
<th>Start-Param</th>
<th>End-Param</th>
<th>Inkrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>WD_1</td>
<td>1. Jan.</td>
<td>30. Apr.</td>
<td>0</td>
<td>12</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>WD_2</td>
<td>1. Feb.</td>
<td>15. Mai.</td>
<td>0</td>
<td>8</td>
<td>0,50</td>
</tr>
<tr>
<td>4</td>
<td>WD_3</td>
<td>1. Jan.</td>
<td>30. Apr.</td>
<td>5</td>
<td>15</td>
<td>0,25</td>
</tr>
<tr>
<td>5</td>
<td>WD_4</td>
<td>1. Mrz.</td>
<td>31. Mai.</td>
<td>0</td>
<td>10</td>
<td>0,10</td>
</tr>
<tr>
<td>6</td>
<td>WD_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculation and optimization of the parameters for a degree-day method

Definition of parameter variation

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD_1</td>
<td>Parameter</td>
<td>Start-Datum</td>
<td>End-Datum</td>
<td>Start-Param</td>
<td>End-Param</td>
<td>Inkrement</td>
</tr>
<tr>
<td>WD_2</td>
<td>Tmean</td>
<td>1. Jan.</td>
<td>30. Apr.</td>
<td>0</td>
<td>12</td>
<td>0,10</td>
</tr>
<tr>
<td>WD_3</td>
<td>Tmin</td>
<td>1. Feb.</td>
<td>15. Mai.</td>
<td>0</td>
<td>8</td>
<td>0,50</td>
</tr>
<tr>
<td>WD_4</td>
<td>Tmax</td>
<td>1. Jan.</td>
<td>30. Apr.</td>
<td>15</td>
<td>25</td>
<td>0,25</td>
</tr>
<tr>
<td>WD_5</td>
<td>T_15</td>
<td>1. Mrz.</td>
<td>31. Mai.</td>
<td>0</td>
<td>10</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Field observation data

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Tag</td>
<td>VarPar</td>
<td>MW</td>
<td>KI95%</td>
<td>STD</td>
<td>SE</td>
</tr>
<tr>
<td>01.01</td>
<td>1</td>
<td>0,00</td>
<td>1655,08</td>
<td>77,10</td>
<td>157,35</td>
<td>39,3374</td>
</tr>
</tbody>
</table>

List of results

RCV Range (d) STD (d) % mean dev. Tsum
Current parameters used to predict the flight of the host populations of *H. obsoletus*

Bindweed populations
- Start of DD-summation: March 9
- T-Threshold: 5.8 °C
- Start of flight: 1053 DD

Nettle populations
- Start of DD-summation: April 1
- T-Threshold: 5 °C
- Start of flight: 1160 DD
Current parameters used to predict the flight of the host populations of *H. obsoletus*

Comparison of calculated and observed flight data